A review of targeted screening for prostate cancer: introducing the IMPACT Study

Anita V. Mitra, Elizabeth K. Bancroft and Rosalind A. Eeles, on behalf of the IMPACT Steering Committee and Collaborators

Cancer Genetics, Institute of Cancer Research and Royal Marsden Hospital, London, UK

Accepted for publication 24 November 2006

KEYWORDS
prostate cancer, screening, BRCA1, BRCA2, IMPACT study

INTRODUCTION

Changing public attitudes towards screening for prostate cancer are evident by the increase in ad hoc PSA testing. This is occurring despite the inability to reliably distinguish aggressive from indolent prostate cancer. The mean age of the onset of prostate cancer in the general population is in the eighth decade, when comorbidity is significant. This has to be considered when balancing reductions in life-expectancy from aggressive vs indolent prostate cancer.

Treating early-onset aggressive disease would intuitively be thought to reduce mortality and morbidity. There have been various measures assessed to attempt to differentiate aggressive from indolent disease. These include Gleason score, volume of disease, PSA density, velocity and free : total PSA ratio.

Although these are promising methods, further research is needed to define optimum levels and some of these measures do not lend themselves easily to a national screening programme.

A different approach to aim to reduce mortality and morbidity from the disease in men with prostate cancer might lie in targeted screening. There are subsets of men who have a greater incidence of prostate cancer and perhaps more aggressive disease than that found in the general population. They include men of Afro-Caribbean ancestry and in some (but not all reports), those with a family history of prostate cancer. This has been noted over many years. More recently, it appears that men with BRCA1 and 2 mutations are also at greater risk of prostate cancer. These men might also develop disease when younger, and when curative treatment is more likely to be recommended, as comorbidity is less relevant.

The scope of this review does not cover those men with Afro-Caribbean ancestry; it focuses instead on studies primarily of men with a positive family history. We aim to give a brief overview of current screening practices and highlight the genetic evidence for prostate cancer. A review of targeted screening practices leads to an introduction of our study, the Identification of Men with a genetic predisposition to Prostate Cancer: Targeted screening for BRCA1 and BRCA2 carriers and controls; the IMPACT study. This is the first international study to target PSA screening based upon known genotype.

A pilot study to lead into the main IMPACT study is now recruiting at the Royal Marsden Hospital NHS Foundation Trust, St Mary's Hospital, Manchester, The Princess Anne Hospital, Southampton and Addenbrooke's Hospital, Cambridge. Recruitment will be extended into international centres in the coming months if the pilot continues to accrue men at its current rapid rate. If the model of this study proves to be beneficial over the coming years, it will enable the study of targeted prostate cancer screening in carriers of mutations in other candidate prostate cancer genes. Genetic heterogeneity is known to occur in genetic predisposition to prostate cancer and it is likely that several prostate cancer predisposition genes will be identified in the next few years.

SCREENING IN THE GENERAL POPULATION

There are no formal screening recommendations for the early detection of prostate cancer in the UK. Men can ask their GP for a PSA test after reading the Department of Health PSA screening leaflet, which describes the pros and cons of the PSA test. The Cancer Genetics Unit of the Royal Marsden NHS Foundation Trust screens men with a serum PSA test if they have a strong family history of prostate cancer, are men of Afro-Caribbean descent and those with BRCA1 or 2 mutations, from the age of 40 years. In the USA, the American Cancer Society and AUA currently recommend offering screening for men beginning at age 50 years. Both organizations recommend offering earlier screening for men considered at high-risk, i.e. of African-American heritage or who have a family history of prostate cancer.

Three international screening trials of the general population are underway. The Prostate, Lung, Colorectal and Ovary Screening Trial in the USA (PLCO), the European Randomised Screening for Prostate Cancer (ERSPC) study and the UK study, ProteCT [1–3]. Whether mortality is reduced will take many years to establish, but it is clear from these studies that asymptomatic prostate cancer is detected at an earlier stage, when curative treatment is more likely to be successful [4].

Several issues have yet to be resolved in this area. The frequency of PSA screening is unclear. Catalona et al. [5] argued for annual PSA testing, as the PSA velocity can then be established and used as a surrogate marker for disease aggression. However, Crawford et al. [6], using results from the PLCO study, suggested screening every 5 years for those who had a baseline PSA of <1 ng/mL and every 2 years for a baseline PSA of 1–2 ng/mL. This, they argued, could result in halving the number of PSA tests and in <1.5% of men missing earlier positive screens. The ERSPC is currently using a screening interval of 4 years, with the first PSA test in the first year and the second at 4 years [2].

The PSA threshold that is used to trigger a prostate biopsy is also much debated. The ERSPC reduced the threshold level from 4 to 3 ng/mL (without using a DRE), resulting in an improvement in the positive predictive value.
from 18.2% to 24.3% [7]. The Prostate Cancer Prevention Trial in the USA detected prostate cancer in 15.2% of men who had total PSA levels of <4 ng/mL [8]. This has led some to suggest that a PSA threshold as low as 2.5 ng/mL should be used as the indication for prostatic biopsy in men being screened in the USA [5].

The IMPACT study will use a PSA threshold of 3 ng/mL, offering a prostate biopsy to any man who has a level higher than this, in line with the ERSPC. Annual PSA testing is offered to men with germline mutations in the BRCA1 or BRCA2 genes, as we anticipate a higher incidence of young-onset prostate cancer in this targeted group. It also enables the PSA velocity to be assessed in these men, to assess whether it can be used as a surrogate marker for aggressive disease.

GENETIC PREDISPOSITION TO PROSTATE CANCER

Concordance of prostate cancer risk is four times greater between monozygotic than dizygotic twins [9]. Men with a family history (FH) of prostate cancer have a greater risk, which increases the younger the proband, the more cases in the family, the lower the average age of onset, and with any combination of these factors [10]. Bruner et al. [11] reported a relative risk of developing prostate cancer of 2.9 with an affected brother, and 1.8–2.1 with an affected father. Segregation analyses suggested the presence of at least one high-risk gene [12–14]. Linkage and other molecular analyses which assess the co-segregation of the disease with genetic markers have implicated that many genes might be involved in the inheritance of prostate cancer. As these genes are identified as ‘prostate cancer predisposition’ genes, IMPACT will incorporate them into an existing framework which currently assesses men who are carriers of mutations in BRCA1 and 2.

Within families there is an association of breast with prostate cancer. Male relatives of women with breast cancer in Iceland have a two to three times greater risk of prostate cancer [15]. The results from the Breast Cancer Linkage Consortium show a relative risk of prostate cancer of 4.65 in male BRCA2 mutation carriers and 1.07 (1.85 if aged <65 years) in BRCA1 mutation carriers [16,17]. The strength of this group’s findings is in the many patients in their study; >3000 BRCA2 mutation carriers and >11 000 BRCA1 mutation carriers. Despite this, the exact prostate cancer risk from mutations in BRCA1 and BRCA2 remains uncertain. There are data from the Ashkenazi Jewish population (whose founder mutations are 185delAG and 5382insC in BRCA1 and 6174delT in BRCA2) that do not show a greater risk of prostate cancer in this cohort [18–21]. One of the largest studies of the Israeli population showed a greater risk of prostate cancer only when both BRCA1 and BRCA2 mutations carriers were combined; however, separately there was no difference [22]. The specific penetrance of cancer differs among populations, within populations and among individuals. There are several potential sources of variation. Allelic variation is due to different mutations of a single gene, e.g. the position of BRCA within a coding region of the gene can influence the risk of breast and ovarian cancer. It might be that the specific founder mutations of the Ashkenazi Jews do not confer any greater risk of prostate cancer but other BRCA1 and 2 mutation carriers do.

Our group has found that 2% of men, pooled from the UK population, who were diagnosed with prostate cancer when young (<55 years) had deleterious germline mutations in BRCA2 (2558insA, 6710delE, 7084delE, 7772insA, 8525delC, IVS17–1G > C). This equates to a relative risk of prostate cancer of up to 23 times by the age of 60 years, which confers an absolute prostate cancer risk of 10% by this age [23]. That these men present with disease of poor prognosis and when young at onset is supported by previous studies [15,24].

TARGETED SCREENING

Relatively few studies have assessed the value of targeted screening in high-risk populations, but of the 10 published, nine support its use. The first screening study conducted in 1992 recruited 34 men aged 55–80 years and who had two first-degree relatives (FDRs) with prostate cancer [25]. All men had prostate biopsies and 24% had a subsequent diagnosis of prostate cancer. This was a higher incidence of prostate cancer than in the general population. However, population screening studies generally do not take a biopsy from all participants, making it difficult to reliably compare these groups. The lack of an adequate control group and the few patients assessed are significant criticisms of that study.

Narod et al. [26] conducted a screening study using PSA levels and a DRE in 6390 men aged 50–80 years, and defined as at high risk by virtue of having one FDR or second DR (SDR) with prostate cancer. If the PSA level was >3 ng/mL or the DRE abnormal, TRUS was offered. Only hypoechoic lesions and areas corresponding to palpable abnormalities were biopsied. This might be considered a weakness of the study, as only half of those men who had TRUS were biopsied. It is not stated how many men had a raised PSA level and were not biopsied, or how many with a PSA level of >3 ng/mL developed prostate cancer. The FH of prostate cancer was reported via questionnaires in 10.3% (FDRs 8.8%; SDRs 1.9%) of men, so these data would have been subject to recall bias. Prostate cancer was detected 2.62 times more often in men with a brother with prostate cancer. The authors also showed that the positive predictive value of the PSA level was higher in men with prostate cancer in a FDR.

Matikainen et al. [27] screened 209 unaffected men aged 45–75 years and with two or more FDRs or SDRs affected by prostate cancer; 10% of the screened group had a raised PSA level. Age-specific reference values of PSA were used as thresholds for biopsy. The elevated values were 2.6–28.3 ng/mL; 3.3% had prostate cancer (mean age 65 years), and 1% had prostatic intraepithelial neoplasia. Only one had prostate cancer at an advanced stage, and 43% of cancers were in men aged <60 years. The frequencies of a raised PSA level (28.6%) and sub-clinical cancer (14.3%) were significantly higher in men from families with a mean age of onset of <60 years. That study had no control group and there were few men, but a prostate cancer diagnosis was 21 times higher than expected from age-adjusted rates in the Finnish population.

Makinen et al. [28] screened 30 403 men using the serum PSA level and offered biopsy if it was >4 ng/mL. FH questionnaires were given to participants, although there was no verification. A positive FH was defined in that study as one or more FDRs with prostate cancer. In all, 964 men had a positive FH and 11% of these men had a raised PSA level; 3% were diagnosed with prostate cancer. In men with no FH, 8% had a raised PSA level and 2.4% had prostate cancer; this was not a statistically significant difference. The authors therefore concluded that the cause of prostate cancer is not understood sufficiently to enable
identification of a high-risk group. This was the first study to have a control group.

A study by Valeri et al. [29] supported the use of targeted PSA screening in men from high-risk families; 691 cases were divided into those with one FDR (sporadic) and those with two or more FDRs (familial) with prostate cancer. FHs were verified and the PSA threshold was 4 ng/mL. There was no difference between the groups overall, but the prostate cancer detection rate was higher in men with a FDR with early-onset prostate cancer (<65 years old). This finding has been echoed in other studies [15,24,28,30]. Of the 10 prostate cancers identified in the study of Valeri et al., most were moderately differentiated and all were clinically localized; again the study was limited by including relatively few cases.

A 10-year longitudinal screening study compared 1224 men of African ancestry, 1227 men with a positive FH and 63 men who had both a positive FH and African ancestry, with 15,964 control men without either African ancestry or FH [31]. In men aged ≥50 years, the prostate cancer detection rate was 6.4% for the controls and 10.3%, 10.5% and 17.5%, respectively, for the three high-risk groups. The definition of a positive FH was not provided and PSA threshold for biopsy changed during the study from 4 to 2.5 ng/mL. An abnormal DRE with no raised PSA level was also an indication for biopsy; FHs were verified. The study also screened a group of men aged 40–49 years, but there was no control group and there were few men. The authors concluded that men with both a positive FH and African ancestry had a higher risk of prostate cancer; 75–80% (less than twice) higher than in the general population.

The Fox Chase Cancer Center screened 310 men, aged 35–69 years, who were Caucasian and with at least one FDR with prostate cancer, or African-American with or without a FH of prostate cancer, men with two or more SDRs, and men with BRCA1 gene mutations (BRCA2 carriers were not commented upon) [32]. The free : total PSA level was used (if <27%, biopsy was recommended) to detect prostate cancer in men with total PSA levels of 2–4 ng/mL. Twenty-three men met these criteria and agreed to have prostate biopsies; prostate cancer was diagnosed in 52%. The study had no control group; the results were compared with those from other studies, where the cancer detection rate was 19–44% in unselected men with PSA levels of 2.6–4.0 ng/mL. The authors recommended that high-risk populations should be screened and that those with PSA levels of 2–4 ng/mL should have their free : total PSA measured.

Studies of targeted screening are sparse and limited by variable definitions of a positive FH, variable PSA thresholds at which biopsy is recommended, a variable acceptance rate of biopsy and often no control group. Despite this, there seems to be consistent evidence of cohorts of men at higher risk of prostate cancer and which can be detected at an early stage (when curative treatment is more likely to be successful) using PSA screening.

Germline mutations in BRCA2 provide the first convincing evidence of a gene predisposing to a high risk of prostate cancer. In the first study of its kind, Horsburgh et al. [33] compared 19 men, i.e. 12 with BRCA1 and seven with BRCA2, with a control group with a FH of prostate cancer in at least one FDR. A positive FH of prostate cancer was reported in three BRCA1 and two BRCA2 families. The control group was not tested for BRCA status. The PSA threshold for biopsy was 4 ng/mL. Mutation carriers were significantly more likely to have a high PSA level at the first visit. Two mutation carriers were found to have prostate cancer, one aged 58 and one aged 65 years. In the control group only one prostate cancer was diagnosed, in a man aged 54 years; the difference was not statistically significant. This study is limited by the very few samples and the control group was not known to be negative for BRCA mutations. Most of the carriers had BRCA1 mutations. BRCA1 carriers have only a slightly greater relative risk, of 1.07 overall (1.8 for men aged <65 years) of developing prostate cancer than in the general population [17,23]. A FH also confers a greater risk of developing the disease and this might be related to different, as yet undiscovered, genes. On balance, it seems unlikely that there were sufficient samples in the study to detect a meaningful difference in the two groups. However, the median age of cancer diagnosis is much less than that in the general population, and further research on larger cohorts was recommended by the authors. The IMPACT study forms one such cohort.

THE IMPACT STUDY

An international collaboration among 39 worldwide centres aims to investigate the role of BRCA1 and BRCA2 germline mutations in the development of prostate cancer, and the sensitivity and specificity of targeted PSA screening in this group. The largest study of its kind, IMPACT aims to recruit 500 men with identified germline BRCA1 mutations and 350 with BRCA2 mutations. They will be unaffected by prostate cancer and aged 40–69 years. The ERSPC and ProtecT studies will provide population-based control groups. In addition, 850 men aged 40–69 years who have tested negative for a known pathogenic familial mutation in BRCA1/2 will be recruited, to provide a carefully matched control group for the targeted screening and biomarker analysis.

The PSA level will be measured annually in both BRCA1 and BRCA2 mutation carriers and in the control group. PSA levels will be measured at the local centre and analysed at a central reference laboratory, to ensure standardization and quality assurance. As PSA level is age-dependent, the results from the male mutation carriers will be compared with age-matched controls from the ERSPC study in Europe and the ProtecT PSA population-screening study in the UK. All men with a PSA level of >3.0 ng/mL will be offered a diagnostic 10-core prostatic biopsy (with a further two cores for research, if consent is given). Those men whose first biopsy detects high-grade prostatic intraepithelial neoplasia will be re-biopsied after 6 weeks (as per the ERSPC protocol). Those men with a negative biopsy will return to annual screening and the biopsy will not be repeated until a the PSA doubling time is >50%. Men with a positive biopsy will be referred to their local urologist for treatment according to local policy.

The aims of IMPACT are as follows: (i) to establish an international targeted prostate cancer-screening study in BRCA1 and BRCA2 germline mutation carriers; (ii) to determine the incidence of a raised PSA level and abnormal biopsy as a result of annual PSA screening in this group; (iii) to determine if the incidence of a raised PSA level and pathology differs from screen-detected disease in controls; (iv) to determine the sensitivity, specificity and positive predictive value of PSA screening for prostate cancer in BRCA1/2 germline mutation carriers; and (v) to evaluate new markers of early prostate cancer (e.g. HK2, new markers from proteomics from prostate cancer cases) in BRCA1/2 germline mutation carriers.
There will be the potential for investigating new prostate cancer predisposition genes or new biomarkers in this population. Whole blood, lymphocytes, serum, plasma, urine and prostate tissue specimens are being collected for further study using proteomic, metabolomic and microarray approaches. 
The flow of patients through the study is shown in Fig. 1.

CONCLUSION

Screening the general population for prostate cancer has not yet shown a convincing reduction in mortality, but trials are ongoing. Screening can be targeted to a group of men who have a higher incidence of disease, by identifying an at-risk genotype. Such disease occurs when younger at onset and therefore curative treatment is more likely to be offered.

IMPACT is the largest international screening study of men with a known genetic predisposition to prostate cancer. Male mutations carriers of BRCA1 and BRCA2 genes are currently being recruited. To date, BRCA2 and to a lesser extent BRCA1 mutations are among the genes with the strongest association with a greater risk of prostate cancer. It is apparent that these are not the only genes implicated in this disease, and as research reveals other prostate cancer predisposition gene mutations, IMPACT will provide an essential framework for targeted screening in these men. For further information about the IMPACT study, please visit www.impact-study.co.uk.

ACKNOWLEDGEMENTS

We thank the Carrier Clinic Collaborators at the Royal Marsden NHS Foundation Trust, London; Dr Huw Dorkins and his team at the Kennedy Galton Centre, London; Dr Louise Izatt and Gabi Pichert and their team at Guy's Hospital, London; Professor Shirley Hodgson and her team at St George's Hospital; Dr Lucy Side and her team at Churchill Hospital, Oxford; Dr Garette Evans and his team at St. Mary's Hospital, Manchester; Dr Diana Eccles and her term at The Princess Anne Hospital, Southampton; Drs Joan Paterson and Virginia Clowes at Addenbrooke's Hospital, Cambridge for their help with recruitment and S. and A. Clift and the Ronald and Rita McAulay Foundation for funding support. Dr Sharifi for his input into writing the protocol.

CONFLICT OF INTEREST

Rosalind A. Eeles has previously received grants from AstraZeneca.

REFERENCES

1 Prorok PC, Andriole GL, Bresalier RS et al; Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial Project Team. Design of the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. Control Clin Trials 2000; 21 (Suppl.): 273S–309S
2 Roobol MJ, Schroder FH, Krane R; ERSPC Rotterdam. A comparison of first and repeat (four years later) prostate cancer screening in a randomized cohort of a symptomatic men aged 55–75 years using a biopsy indication of 3.0 ng/ml (results of ERSPC, Rotterdam). Prostate 2006; 66: 604–12
6 Crawford ED, Pinsky PF, Chia D et al. Prostate specific antigen changes as related to the initial prostate specific antigen: data from the prostate, lung, colorectal and ovarian cancer screening trial. J Urol 2006; 175: 1286–90
increased frequency in Ashkenazi patients
BRCA1/BRCA2 genes are not found at an
Jewish Ashkenazi founder mutation in the
prostate cancer patients.
BRCA2 do not contribute to early prostate
cancer in Jewish men.
BRCA1 and BRCA2 in prostate cancer in
Segmentation analysis of prostate cancer in Sweden: support for dominant
The Jewish Ashkenazi founder mutation in the BRCA1/BRCA2 genes are not found at an
increased frequency in Ashkenazi patients with prostate cancer. Am J Hum Genet 1999; 65: 921–4
The rate of the founder Jewish mutations in BRCA1 and BRCA2 in prostate cancer in
Israel. Br J Cancer 2000; 83: 463–6
Gerdes, Clinical Genetics Department, Odense, Denmark, Prof Laurent Boccon-Gibod Clinique Urologique, Paris, France, Dr Catherine Nogues, Dr Nadine Andrieu, Saint-Cloud, France, Dr Jenny Chang-Claude Division of Epidemiology, Heidelberg, Germany, Prof Dr Rita Schmutzler and Dr Kerstin Luedtke-Heckenkamp, Köln, Germany, Dr Drakoulis Yannoukakos and Dr Theodore Anagnostopoulos, Molecular Diagnostics Laboratory, Athens, Greece, Prof E Olah and Dr Janos Papp, Department of Molecular Genetics, Budapest, Hungary, Prof Dror Jorunn Eyfjord, Head of Molecular Genetics, Reykjavik, Iceland, Prof T Rajkumar, Head of Molecular Oncology, Adyar Chennai, India, Dr Asher Salmon, Institute of Oncology, Jerusalem, Israel, Dr Maria Caligo and Prof G Bevilacqua, Section of Genetic Oncology, Pisa, Italy, Dr P Radice, Dr N Nicolai and Dr Riccardo Valdagni, Section of Genetic Oncology, Milan, Italy, Prof Janis Gardovskis, Dr Arvids Imrejs and Dr Andris Abele, Riga, Latvia, Dr M. Nansalmaa, Ulaanbaatar, Mongolia, Dr Lovise Maehle, Dr Wolfgang Lilley, Dr Ketil Heimdahl and Dr Pal Moller, Departments of Genetics and Oncology, Oslo, Norway, Prof Fernando Regateiro and Prof C De Silva, Coimbra, Portugal, Dr Ludmila Lyubchenko, Clinical Genetics Laboratory & Out-Patient Department, Russia, Prof J Benitez, Dr Ana Osorio, Department of Human Genetics, Madrid, Spain, Dr Pedro P. Segura, and Dr Trinidad Caldes, Molecular Oncology Laboratory, Madrid, Spain, Dr Ignacio Blanco, Dr Merce Peris, Genetic Counselling Unit, Barcelona, Spain, Prof Hakan Olsson and Dr Niklas Loman, Department of Oncology, Lund, Sweden, Prof Ola Bratt, Consultant Urological Surgeon, Lund, Sweden, Dr Brita Arver, Department of Clinical Genetics, Stockholm, Sweden, Dr C.J. van Asperen, Department of Clinical Genetics, Leiden, the Netherlands, Prof Bart Kiemeyer, Departments of Epidemiology and Urology, Nijmegen, the Netherlands, Dr Hans Vasan, Dr Matti Rookus, Dr Fernando van Leeuwen and Dr Richard Brohet, Department of Epidemiology, Amsterdam, the Netherlands, Prof G Luleci and Dr Esra Manguolu, Departments Medical Biology and Genetics, Antalya, Turkey, Dr Ugur Ozbek, Prof of Genetics, Istanbul, Turkey, Dr Carole Brewer, Consultant Clinical Geneticist, Exeter, Prof Cyril Chapman and Dr Trevor Cole, Consultants in Clinical Genetics, Birmingham, Dr Jackie Cook, Consultant in Clinical Genetics, Sheffield, Mrs Margaret Cook, Cancer Research UK Genetic Epidemiology Unit, Cambridge, Prof Colin Cooper, Molecular Carcinogenesis, Sutton, Dr Rosemarie Davidson, Consultant in Clinical Genetics, Glasgow, Dr Alan Donaldson, Consultant Clinical Geneticist, Bristol, Dr Huw Dorkins/Mrs Carole Cummings, Middlesex, Dr Fiona Douglas, Consultant Clinical Geneticist, Newcastle, Prof Neva Haines/Dr Helen Gregory, Prof in Medical Genetics/Staff Grade Medical Genetics, Aberdeen, Prof Shirley Hodgson, Consultant Clinical Geneticist, London, Dr Louise Izatt, Lead Consultant in Cancer Genetics, London, Dr James Mackay and Dr Mark Tischkowitz, Clinical Geneticist, London, Dr Joan Paterson and Dr Virginia Clowes, Clinical Geneticist, Cambridge, Dr Lucy Side, Consultant in Clinical Genetics, Oxford, Prof Mike Stratton, The Wellcome Trust Sangar Institute, Cambridge, Mr Alan Thompson, Consultant Urologist, London, UK, Dr David Goldgar, Genetic Epidemiology, Utah, USA, Professor Cyril Fisher, Consultant Histopathologist, London, UK.